Track 13: New Paradigm of Intelligent Electromagnetic Channels for 6G | 面向6G的电磁信道智能新范式

Organizers | 组织者

Wei Wang (王威)

Chair

Chang'an University
长安大学

Siyuan He (何思远)

Co-Chair

Wuhan University
武汉大学

Yue Lyu (吕悦)

Co-Chair

Chang'an University
长安大学

Abstract | 论坛简介

In the evolution toward 6G, the electromagnetic channel serves as the critical link between the physical environment and communication-sensing performance, becoming a key breakthrough point to overcome bottlenecks in traditional technologies. This forum aims to bring together top scholars and engineers to explore three core dimensions: first, the perception, modeling, and dynamic updating of refined electromagnetic information under multi-band and multi-scenario conditions; second, AI-driven innovations in foundational models for channel feature extraction, compression, and extrapolation; and third, the enabling applications of emerging electromagnetic maps in typical 6G scenarios such as target sensing, intelligent beamforming, cell-free networks, and Integrated Sensing, Communication, and Computation (ISCC). Through in-depth discussions, we expect to clarify key technical paths, promote interdisciplinary integration, and jointly drive channel cognition from statistical representation toward an interpretable and inferable intelligent new paradigm.

在无线通信向6G演进的进程中,电磁信道作为连接物理环境与通信感知性能的关键纽带,正逐步成为突破传统通信与感知技术瓶颈的重要突破口。本次前沿论坛旨在汇聚该领域的顶尖学者与工程师,聚焦三大核心维度展开深入交流:一是多频段、多场景条件下精细化电磁信息的感知、模型构建与动态更新技术;二是人工智能驱动的信道特征提取、压缩与外推等基础模型创新;三是新兴电磁图谱在目标感知、智能波束赋形、无蜂窝网络及通感算一体化等6G典型场景中的赋能应用。论坛期望通过深度研讨,厘清关键技术路径,促进跨学科深度融合,共同推动信道认知从统计表征迈向可解释、可推演的智能新范式。

Topics | 主题范围

  • New theories and paradigms of electromagnetic channels for 6G | 面向6G的电磁信道新理论与新范式
  • Multi-band (Sub-6G, mmWave, THz) channel measurement and modeling | 多频段(Sub-6G、毫米波、太赫兹)电磁信道测量与建模
  • Channel sensing and cognitive methods in Space-Air-Ground Integrated Networks (SAGIN) | 空天地一体化(SAGIN)场景下的信道感知与认知方法
  • Statistical modeling and parameter evolution of non-stationary, time-varying channels | 非平稳、时变电磁信道的统计建模与参数演化机制
  • Electromagnetic environment sensing and physically interpretable channel modeling | 电磁环境感知与物理可解释信道建模方法
  • AI-based channel parameter extraction, feature compression, and extrapolation | 基于AI的信道参数提取、特征压缩与外推预测
  • Intelligent channel modeling via fusion of data-driven and model-driven approaches | 数据驱动与模型驱动融合的智能信道建模方法
  • Construction, update, and high-dimensional representation of electromagnetic maps | 电磁图谱构建、更新与高维表达技术
  • Channel modeling and sensing coordination for Integrated Sensing and Communication (ISAC) | 面向通感一体化的信道建模与感知协同机制
  • Channel knowledge-aided intelligent beamforming and resource optimization | 信道知识辅助的智能波束赋形与资源优化
  • Channel modeling and collaborative sensing for Cell-Free networks | 面向无蜂窝网络的信道建模与协同感知
  • Applications of electromagnetic channels in target sensing, localization, and environmental reconstruction | 电磁信道在目标感知、定位与环境重构中的应用
  • Integrated Communication-Sensing-Computing channel design for 6G | 面向6G的通信–感知–计算一体化信道设计
  • Digital twin electromagnetic environments and virtual-real fusion channel modeling | 数字孪生电磁环境与虚实融合信道建模
  • Novel measurement platforms, experimental methods, and open datasets | 新型测量平台、实验方法与开放数据集
  • Application of explainable AI in electromagnetic channel modeling and inference | 可解释AI在电磁信道建模与推演中的应用